Algebraic perspectives of Persistence
The stability of persistence barcodes

Ulrich Bauer
TUM
April 24, 2017
What is persistent homology?

[Diagram showing the concept of persistent homology with a δ scale and examples of geometric structures at different scales.]
What is persistent homology?
What is persistent homology?
What is persistent homology?

Persistent homology is the homology of a filtration
What is persistent homology?

Persistent homology is the homology of a filtration

- A filtration is a certain diagram $K : \mathbb{R} \to \text{Top}$
 - \mathbb{R} is the poset category of (\mathbb{R}, \leq)
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$
What is persistent homology?

Persistent homology is the homology of a filtration

- A filtration is a certain diagram \(K : \mathbb{R} \to \text{Top} \)
 - \(\mathbb{R} \) is the poset category of \((\mathbb{R}, \leq) \)
 - A topological space \(K_t \) for each \(t \in \mathbb{R} \)
 - An inclusion map \(K_s \hookrightarrow K_t \) for each \(s \leq t \in \mathbb{R} \)
- Consider homology with coefficients in a field (often \(\mathbb{Z}_2 \))
 \(H_* : \text{Top} \to \text{Vect} \)
What is persistent homology?

Persistent homology is the homology of a filtration

- A filtration is a certain diagram $K : \mathbb{R} \to \text{Top}$
 - \mathbb{R} is the poset category of (\mathbb{R}, \leq)
 - A topological space K_t for each $t \in \mathbb{R}$
 - An inclusion map $K_s \hookrightarrow K_t$ for each $s \leq t \in \mathbb{R}$
- Consider homology with coefficients in a field (often \mathbb{Z}_2)
 $H_* : \text{Top} \to \text{Vect}$
- Persistent homology is a diagram $M : \mathbb{R} \to \text{Vect}$
 (persistance module)
Homology inference
Homology inference

Given: finite sample $P \subset \Omega$ of unknown shape $\Omega \subset \mathbb{R}^d$

Problem (Homology inference)

Determine the homology $H_\ast(\Omega)$.

Homology inference

Given: finite sample $P \subset \Omega$ of unknown shape $\Omega \subset \mathbb{R}^d$

Problem (Homology inference)

*Determine the homology $H_\ast(\Omega)$.***

Problem (Homological reconstruction)

*Construct a shape X with $H_\ast(X) \cong H_\ast(\Omega)$.***
Homology inference

Given: finite sample $P \subset \Omega$ of unknown shape $\Omega \subset \mathbb{R}^d$

Problem (Homology inference)

Determine the homology $H_*(\Omega)$.

Problem (Homological reconstruction)

Construct a shape X *with* $H_*(X) \cong H_*(\Omega)$.

Idea:

- approximate the shape by a thickening $B_\delta(P)$ covering Ω
Homology inference

Given: finite sample $P \subset \Omega$ of unknown shape $\Omega \subset \mathbb{R}^d$

Problem (Homology inference)

Determine the homology $H_\ast(\Omega)$.

Problem (Homological reconstruction)

Construct a shape X with $H_\ast(X) \cong H_\ast(\Omega)$.

Idea:

- approximate the shape by a thickening $B_\delta(P)$ covering Ω

Requires strong assumptions:
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let \(M \) be a submanifold of \(\mathbb{R}^d \). Let \(P \subset M, \delta > 0 \) be such that

- \(B_\delta(P) \) covers \(\Omega \), and
- \(\delta < \sqrt{3/20} \text{reach}(M) \).

Then \(H_*(M) \cong H_*(B_{2\delta}(P)) \).
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \operatorname{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

![Diagram of a submanifold with points and a function graph]
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

0.2 0.4 0.6 0.8 1.0 1.2
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_{\delta}(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

![Graph description](image-url)
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{ reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_*(M) \cong H_*(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let \(M \) be a submanifold of \(\mathbb{R}^d \). Let \(P \subset M, \delta > 0 \) be such that

- \(B_\delta(P) \) covers \(\Omega \), and
- \(\delta < \sqrt{3/20} \) reach\((M)\).

Then \(H_\ast(M) \cong H_\ast(B_{2\delta}(P)) \).
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{ reach}(M)}$.

Then $H_*(M) \cong H_*(B_{2\delta}(P))$.

\[\begin{array}{c}
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1.0 \\
1.2
\end{array}\]
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20} \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{ reach}(M)}$.

Then $H_*(M) \cong H_*(B_{2\delta}(P))$.

![Diagram](image-url)
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20}\ \text{reach}(M)$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{ reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.

![Graph showing homology reconstruction]

0.2 0.4 0.6 0.8 1.0 1.2
Homology reconstruction by thickening

Theorem (Niyogi, Smale, Weinberger 2006)

Let M be a submanifold of \mathbb{R}^d. Let $P \subset M$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- $\delta < \sqrt{3/20 \text{reach}(M)}$.

Then $H_\ast(M) \cong H_\ast(B_{2\delta}(P))$.
Homology inference using persistence

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let $\Omega \subset \mathbb{R}^d$. Let $P \subset \Omega$, $\delta > 0$ be such that

- $B_\delta(P)$ covers Ω, and
- the inclusions $\Omega \hookrightarrow B_\delta(\Omega) \hookrightarrow B_{2\delta}(\Omega)$ preserve homology.

Then $H_\ast(\Omega) \cong \text{im } H_\ast(B_\delta(P) \hookrightarrow B_{2\delta}(P))$.

![Diagram showing homology persistence](image-url)
Stability
Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let \(\| f - g \|_\infty = \delta \). Then there exists a matching between the intervals of the persistence barcodes of \(f \) and \(g \) such that
Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let $\|f - g\|_\infty = \delta$. Then there exists a matching between the intervals of the persistence barcodes of f and g such that

- matched intervals have endpoints within distance $\leq \delta$, and
Stability of persistence barcodes for functions

Theorem (Cohen-Steiner, Edelsbrunner, Harer 2005)

Let $\|f - g\|_\infty = \delta$. Then there exists a matching between the intervals of the persistence barcodes of f and g such that

- matched intervals have endpoints within distance $\leq \delta$, and
- unmatched intervals have length $\leq 2\delta$.
Persistence and stability: the big picture

Data

point cloud

\[P \subset \mathbb{R}^d \]
Persistence and stability: the big picture

Data
\[\downarrow \]
Geometry

point cloud
\[\downarrow \]
distance
function

\(P \subset \mathbb{R}^d \)

\(f : \mathbb{R}^d \rightarrow \mathbb{R} \)
Persistence and stability: the big picture

Data \rightarrow\text{Geometry} \rightarrow\text{Topology}

point cloud \downarrow\text{distance} \downarrow\text{sublevel sets}\downarrow\text{topological spaces (filtration)}

\begin{align*}
P & \subset \mathbb{R}^d \\
f : \mathbb{R}^d & \rightarrow \mathbb{R} \\
K & : \mathbb{R} \rightarrow \text{Top}
\end{align*}
Persistence and stability: the big picture

Data → Geometry → Topology → Algebra

point cloud

distance

function

sublevel sets

topological spaces (filtration)

homology

vector spaces (persistence module)

$P \subset \mathbb{R}^d$

$f : \mathbb{R}^d \to \mathbb{R}$

$K : \mathbb{R} \to \text{Top}$

$M : \mathbb{R} \to \text{Vect}$
Persistence and stability: the big picture

Data $P \subset \mathbb{R}^d$

Geometry

Topology

Topology

Algebra

Combinatorics

point cloud

function

sublevel sets

topological spaces (filtration)

homology

vector spaces (persistence module)

structure theorem

intervals (persistence barcode)

$K : \mathbb{R} \to \text{Top}$

$M : \mathbb{R} \to \text{Vect}$

$B : \mathbb{R} \to \text{Mch}$
Interleavings

Let $\delta = \|f - g\|_\infty$. Write $F_t = f^{-1}(-\infty, t]$ and $G_t = g^{-1}(-\infty, t]$.
Let $\delta = \|f - g\|_\infty$. Write $F_t = f^{-1}(-\infty, t]$ and $G_t = g^{-1}(-\infty, t]$. Then the sublevel set filtrations $F, G : \mathbb{R} \to \text{Top}$ are δ-interleaved:
Interleavings

Let $\delta = \|f - g\|_\infty$. Write $F_t = f^{-1}(-\infty, t]$ and $G_t = g^{-1}(-\infty, t]$. Then the sublevel set filtrations $F, G: \mathbb{R} \to \text{Top}$ are δ-interleaved:

Applying homology (functor) preserves commutativity

- persistent homology of f, g yields δ-interleaved persistence modules $\mathbb{R} \to \text{Vect}$
Geometric interleavings
Geometric interleavings
Geometric interleavings
Geometric interleavings
Geometric interleavings
Geometric interleavings

If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes:

- matched intervals have endpoints within distance $\leq \delta$,
- unmatched intervals have length $\leq 2\delta$.
Algebraic stability of persistence barcodes

If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes:

- matched intervals have endpoints within distance $\leq \delta$,
- unmatched intervals have length $\leq 2\delta$.

If two persistence modules are δ-interleaved, then there exists a δ-matching of their barcodes:

- matched intervals have endpoints within distance $\leq \delta$,
- unmatched intervals have length $\leq 2\delta$.

Algebraic stability of persistence barcodes
Barcodes as diagrams
The matching category

A matching $\sigma : S \leftrightarrow T$ is a bijection $S' \to T'$, where $S' \subseteq S$, $T' \subseteq T$.

![Diagram of matching category]
The matching category

A matching $\sigma : S \rightrightarrows T$ is a bijection $S' \to T'$, where $S' \subseteq S$, $T' \subseteq T$.

Composition of matchings $\sigma : S \rightrightarrows T$ and $\tau : T \rightrightarrows U$:
The matching category

A matching $\sigma : S \leftrightarrow T$ is a bijection $S' \rightarrow T'$, where $S' \subseteq S$, $T' \subseteq T$.

Composition of matchings $\sigma : S \leftrightarrow T$ and $\tau : T \leftrightarrow U$:

Matchings form a category Mch

- objects: sets
- morphisms: matchings
Barcodes as matching diagrams

We can regard a barcode B as a functor $R \rightarrow \text{Mch}$:
Barcodes as matching diagrams

We can regard a barcode B as a functor $\mathbb{R} \to \text{Mch}$:

- For each real number t, let B_t be those intervals of B that contain t, and
Barcodes as matching diagrams

We can regard a barcode B as a functor $\mathbf{R} \to \mathbf{Mch}$:

- For each real number t, let B_t be those intervals of B that contain t, and
- for each $s \leq t$, define the matching $B_s \leftrightarrow B_t$ to be the identity on $B_s \cap B_t$.

\[\begin{array}{c|c|c|c|c}
\delta & 0.1 & 0.2 & 0.4 & 0.8 \\
\hline
\end{array} \]
Stability via functoriality?

\[
\begin{align*}
F_t & \leftrightarrow F_{t+2\delta} \\
G_{t+\delta} & \leftrightarrow G_{t+3\delta}
\end{align*}
\]
Stability via functoriality?

\[H_*(F_t) \rightarrow H_*(F_{t+2\delta}) \]

\[\downarrow \quad \downarrow \quad \downarrow \]

\[H_*(G_{t+\delta}) \rightarrow H_*(G_{t+3\delta}) \]
Stability via functoriality?

\[B(H_*(F_t)) \rightarrow B(H_*(F_{t+2\delta})) \]

\[B(H_*(G_{t+\delta})) \rightarrow B(H_*(G_{t+3\delta})) \]
Stability via functoriality?

\[B(H_*(F_t)) \rightarrow B(H_*(F_{t+2\delta})) \]
\[B(H_*(G_{t+\delta})) \rightarrow B(H_*(G_{t+3\delta})). \]
Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functor $\text{Vect}^R \to \text{Mch}^R$ sending each persistence module to its barcode.
Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)

There exists no functor $\text{Vect}^R \to \text{Mch}^R$ sending each persistence module to its barcode.

Proposition

There exists no functor $\text{Vect} \to \text{Mch}$ sending each vector space of dimension d to a set of cardinality d.
Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)
There exists no functor $\text{Vect}^R \to \text{Mch}^R$ sending each persistence module to its barcode.

Proposition
There exists no functor $\text{Vect} \to \text{Mch}$ sending each vector space of dimension d to a set of cardinality d.

- Such a functor would necessarily send a linear map of rank r to a matching of cardinality r.
Non-functoriality of the persistence barcode

Theorem (B, Lesnick 2014)
There exists no functor $\text{Vect}^R \to \text{Mch}^R$ sending each persistence module to its barcode.

Proposition
There exists no functor $\text{Vect} \to \text{Mch}$ sending each vector space of dimension d to a set of cardinality d.

- Such a functor would necessarily send a linear map of rank r to a matching of cardinality r.
- In particular, there is no natural choice of basis for vector spaces.